
MuSERA: Multiple Sample Enriched Region

Assessment
Vahid Jalili, Matteo Matteucci, Marco J. Morelli and Marco Masseroli
Corresponding author. Marco Masseroli, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32,
20133 Milano, Italy. Tel.: þ39-02-2399-3553; Fax: þ39-02-2399-3411; E-mail: marco.masseroli@polimi.it

Abstract

Enriched region (ER) identification is a fundamental step in several next-generation sequencing (NGS) experiment types.
Yet, although NGS experimental protocols recommend producing replicate samples for each evaluated condition and their
consistency is usually assessed, typically pipelines for ER identification do not consider available NGS replicates. This may
alter genome-wide descriptions of ERs, hinder significance of subsequent analyses on detected ERs and eventually preclude
biological discoveries that evidence in replicate could support. MuSERA is a broadly useful stand-alone tool for both inter-
active and batch analysis of combined evidence from ERs in multiple ChIP-seq or DNase-seq replicates. Besides rigorously
combining sample replicates to increase statistical significance of detected ERs, it also provides quantitative evaluations
and graphical features to assess the biological relevance of each determined ER set within its genomic context; they include
genomic annotation of determined ERs, nearest ER distance distribution, global correlation assessment of ERs and an inte-
grated genome browser. We review MuSERA rationale and implementation, and illustrate how sets of significant ERs are ex-
panded by applying MuSERA on replicates for several types of NGS data, including ChIP-seq of transcription factors or his-
tone marks and DNase-seq hypersensitive sites. We show that MuSERA can determine a new, enhanced set of ERs for each
sample by locally combining evidence on replicates, and prove how the easy-to-use interactive graphical displays and
quantitative evaluations that MuSERA provides effectively support thorough inspection of obtained results and evaluation
of their biological content, facilitating their understanding and biological interpretations. MuSERA is freely available at
http://www.bioinformatics.deib.polimi.it/MuSERA/.

Key words: next-generation sequencing; ChIP-seq and DNase-seq data analysis; combined evidence in replicates; integrated
genome browser; genomic data visualization

Background

Next-generation sequencing (NGS) is a multi-purpose technology,
which allows precise determination of DNA or RNA sequences
within a sample of interest [1]. In particular, some strategies

allow enriching for regions of cellular DNA characterized by some
common property: chromatin immunoprecipitation followed by
NGS (ChIP-seq) [2] reveals genome-wide DNA–protein inter-
actions and chromatin modifications, e.g. histone marks, while
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DNase I sequencing (DNase-seq) [3] provides a global view of the
open chromatin in a cellular sample through the identification of
hypersensitive sites. The analysis of these NGS data returns, in
both techniques, a list of enriched regions (ERs), often named
‘peaks’ and defined through their genomic coordinates; usually
these peaks are also associated with a statistical significance
score, i.e. a P-value. The availability of NGS data has opened the
possibility of a comprehensive characterization of genomic and
epigenomic landscapes; yet, extracting such biological informa-
tion from raw data requires the use of complex computational
pipelines, which include the identification of the ERs as a key
step.

Although NGS experimental protocols recommend the pro-
duction of at least two replicates for each sequenced sample,
specific methods and tools currently used for ER calling (e.g.
MACS [4] or ZINBA [5]) usually consider only a single sample at
a time, and use global stringent thresholds to eliminate the
noise in the data [6]; then, the ERs extracted from individual
replicates are compared, and typically only the ERs identified in
multiple replicates are retained (e.g. by simple intersection or
using the irreproducibility discovery rate (IDR) method [7]). As
we recently demonstrated [8], considering single samples and
applying individual stringent thresholds lead to the discovery of
the strongest ERs only, and it may discard true, although less in-
tense, ERs, which in turn could be picked up by taking advan-
tage of the increased sensitivity provided by replicates.
Neglecting weak ERs may eventually distort the genome-wide
picture of the genomic locations of the ERs of interest, hamper
the significance of the following analyses on the identified ERs
and ultimately prevent biological discoveries that could be sup-
ported by considering also the true, but less intense, ERs (i.e.
genomic features) present in the NGS data. Alternative methods
considering multiple samples exist, but were designed for other
purposes (e.g. jMOSAiCS [9], which was designed to identify
combinatorial patterns of enrichment across multiple ChIP-seq
samples); they can be used also to discover ERs across repli-
cates, but at the cost of a higher number of not validated peaks
(false positives) [8].

Recently, we proposed a novel method that simultaneously
considers multiple ChIP-seq replicates for transcription factors
(TFs) and rigorously combines local evidence of ERs; the method
provides new sample-specific peak lists taking into account the
combined evidence of ERs, called with a threshold less stringent
than usual [8]. In the tests performed on public ChIP-seq data
sets for the Myc TF in K562 human cells, this method allowed to
significantly extend the number of detected ERs, with respect to
single-sample analysis with an equivalent significance thresh-
old. The newly discovered ERs were validated by motif analysis
and overlap with open chromatin regions. Furthermore, com-
parison with alternative methods (i.e. IDR and jMOSAiCS)
showed that the method discovers more validated peaks than
the former and less peaks than the latter, but with a better
validation.

The authenticity of the ERs discovered by combining evi-
dence depends on a variety of factors, including the quality of
replicates and called ERs, as well as the choice of parameter val-
ues used to combine the evidence. An assessment of the result-
ing ERs should always be performed: for example, it could be
achieved by visualizing the results in a genome browser, in-
specting ER nearest-neighbour distributions, and/or comparing
the ERs with known genomic annotations (functional analysis).
These last two procedures involve the calculation of the distri-
bution of distances between ERs of replicates, or between ERs
and known genomic features (e.g. genes, promoters or other

regulatory regions). Such distributions may show, for example,
that ERs in different sets are relatively close to each other, but
they are not overlapping, or that they are not at specific dis-
tances from known genes; if this is not expected (e.g. as in the
case of replicates regarding ChIP-seq experiments of TFs), it
may suggest a revision of the parameter values used for peak
calling, or for combining ER evidence.

Addressing all the above aspects, here we review MuSERA, a
novel, broadly useful, advanced graphical tool that efficiently
implements, extends and generalizes the original method pre-
sented in [8], and, in addition, integrates commonly used ana-
lysis features that allow performing easily further assessments,
genomic annotations and functional analyses on the identified
ERs. Through its intuitive graphical interface, MuSERA provides
several graphic displays that help the user in gaining a deeper
insight and biological evaluation of the analysis results. We re-
view the main MuSERA features, describing how they are imple-
mented, and we apply MuSERA to several types of data, from
ChIP-seq experiments of TFs or histone marks, both narrow
and broad, to DNase-seq experiments. Finally, we review and
discuss some examples of the analysis of these data using
MuSERA, which show the relevance of the additional ERs identi-
fied with MuSERA, as well as the efficacy of the graphical dis-
plays of the computational results that MuSERA provides in
supporting the biological interpretation of NGS experiments.

Notations

An ER is a unique independent entity, denoted by rji, belonging
to the sample Rj¼ {rj1, . . ., rji, . . ., rjI}, with U¼ {R1, . . ., Rj, . . ., RJ}
being a set of replicates; the index i, with 1� i� I, identifies the
regions within a given replicate, and the index j, with 1� j� J,
identifies the replicates. An ER is characterized by its genomic
coordinates (chromosomeji, startji, endji) and P-valueji (pji). The sig-
nificance of rji is stratified by the ‘stringent’ (Ts) and ‘weak’ (Tw)
thresholds, with Ts<Tw; accordingly, Rj

s¼ {rji j pji<Ts}, Rj
w¼ {rji j

Ts�pji<Tw} and Rj
b¼ {rji j pji � Tw} represent the sets of ‘strin-

gent’, ‘weak’ and ‘background’ ERs, respectively, for the repli-
cate sample j.

Let Rji,* be the set of all ERs intersecting with rji (including rji),
where only the intersecting ER with the lowest/highest P-value
of each sample is considered if multiple intersecting ERs exist in
a sample, and let K¼ jRji,*j, where 1�K� J by definition.
According to the method in [8], the significance of an ER in Rji,* is
assessed by computing a ‘combined evidence’ X2 statistics (i.e.
the sum, over the K ERs in Rji,*, of �2 ln pji), which, according to
the Fisher’s combined probability test [10], follows a v2 distribu-
tion with 2K degrees of freedom; the right-tail cumulative prob-
ability of this v2 distribution defines the ER combined evidence
pji

comb, whose comparison with a ‘stringency threshold’ c defines
‘confirmed’ (Rj

c¼ {rji j pji
comb � c}) and ‘discarded’ (Rj

d¼ {rji j
pji

comb> c}) sets of ERs for each replicate sample j. Subsequently,
the method generates an ‘output set’ (Rj

o) for each replicate
sample by applying a multiple testing correction procedure on
the confirmed ERs of the sample. Additionally, for each replicate
sample j, the method defines the following sets: (i) ‘stringent
confirmed’ Rj

sc¼ {rji j pji<Ts ^ pji
comb � c} � Rj

c, (ii) ‘stringent dis-
carded’ Rj

sd¼ {rji j pji<Ts ^ pji
comb> c} � Rj

d, (iii) ‘weak confirmed’
Rj

wc¼ {rji j Ts�pji<Tw ^ pji
comb � c} � Rj

c, (iv) ‘weak discarded’
Rj

wd¼ {rji j Ts�pji<Tw ^ pji
comb> c} � Rj

d, (v) ‘multiple-testing con-
firmed’ Rj

mtc (with Rj
mtc¼Rj

o) and (vi) ‘multiple-testing discarded’
Rj

mtd (with Rj
mtcþRj

mtd¼Rj
c). In addition to the method from [8],

MuSERA provides also a single ‘unified output set’ (Ruo) repre-
senting the confirmed ERs present in all the Rj

o sets of the
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combined replicate samples. This Ruo set is built by merging all
ERs in all the Rj

o sets (one for each replicate sample), so that, for
each group of overlapping ERs in the Rj

o sets, only a single ER is
present in Ruo, having as left-end and as right-end the left-most
left-end and the right-most right-end of the overlapping ERs, re-
spectively. A significance score is assigned to each ER in Ruo, cal-
culated by rigorously combining the significance of the
overlapping ERs in the Rj

o sets using the Fisher’s method [10].

MuSERA features

MuSERA combines replicates to increase the statistical signifi-
cance of ERs. It assigns ERs to different sets and provides an
integrated genome browser for their visualization. Furthermore,
for the evaluation of the replicate-combined results, it offers
several additional features, including ‘genomic annotation and
functional analysis of enriched regions’, ‘nearest enriched re-
gion distance distribution’ and ‘global correlation assessment of
enriched regions’, for in-depth investigation of each of the ER
sets. MuSERA bins distances based on a user-modifiable win-
dow size, shows results on tables and plots (supporting user-
friendly zoom and pan) and allows operations to be applied on
user-selected chromosomes. These and other MuSERA features,
including ‘interactive and batch execution’ as well as ‘input/
output standard data formats’, are reviewed in the following
sections, where we show the relevance and utility of MuSERA
for biological investigation. MuSERA is a .NET application imple-
mented in C# that runs primarily on Microsoft WindowsVR and
may be run also on other operating systems using an Oracle
Virtual Box virtual machine freely provided for non-commercial
use.

Combining replicates

To combine ER evidence present in sample replicates, MuSERA
extends the method described in [8], and implements it in an ef-
ficient multi-threaded environment. Each ER is categorized as
‘stringent’, ‘weak’ or ‘background’ with respect to the signifi-
cance of the ER according to user-defined stringent (Ts) and
weak (Tw) thresholds, with only ‘stringent’ and ‘weak’ ERs being
considered for replicate evidence combination. The algorithm
combines the P-values of intersecting ERs using the Fisher’s
method [10], if and only if the number of such intersecting ERs
is above or equal to a user-defined lower bound (C); accordingly,
it assigns the property of ‘confirmed’ or ‘discarded’ to each of
the intersecting ERs if the combined evidence pji

comb is below or
is not below, respectively, the user-defined combined strin-
gency threshold c (see the ‘Notations’ section). Besides, overlap-
ping ERs located in a number of samples below the required
value of the parameter C are ‘discarded’. Each replicate sample
contributes to the evidence combination with single evidence
only; hence, if a sample has multiple ERs overlapping with a
single ER of another sample, only the most/least stringent (ac-
cording to user definition) overlapping ER of the former repli-
cate is considered for the evaluation of the ER of the latter
replicate.

Genomic annotation and functional
analysis of ERs

An ER can overlap known genomic loci, like promoters or other
regulatory elements of genes. Besides, a gene might be regu-
lated by a TF bound to a DNA regulatory element far from its

promoter (e.g. regulatory elements called ‘enhancers’ [11] can
be located far from transcription start, like for the Sonic hedge-
hog (Shh) gene in mouse [12]), even interspersed with other
non-regulated genes [13, 14]. MuSERA can efficiently assign an
ER to the closest up-/down-stream genomic feature [e.g. gene
transcription start site, promoter region, Coding DNA Sequence
(CDS) or enhancer], thanks to its optimized implementation
using an adaptive binning of data (see ‘Implementation’ section
and Figures 1B and 2). Furthermore, MuSERA estimates the ‘ER-
to-feature overlap score’, by determining the number of ERs
intersecting with genomic annotations (e.g. known genes, 30/50

untranslated regions, CDSs, intergenic regions (IGR), introns,
promoter regions), or with any experimentally verified binding
sites uploaded in MuSERA by the user as annotations in General
Transfer Format (GTF). Additionally, it estimates the ‘ER-to-fea-
ture distance distribution’ between the ERs and the closest up-/
down-stream features per functional group. All these options
allow better biological evaluation of the distribution of the ERs
in the genomic context.

Nearest ER distance distribution

MuSERA can compute the ER nearest neighbour distance distri-
bution (NND). In each analysis session consisting of at least two
samples, the ERs of each sample are grouped into different sets
before (‘stringent’ or ‘weak’ set) and after (‘stringent confirmed’,
‘weak confirmed’, ‘stringent discarded’, and ‘output’ set) the
multiple-sample analysis. To estimate the NND, after the user
chooses the desired sample(s) and set(s) to be considered, for
each ER, MuSERA determines the distance to the nearest ER; an
option is available to treat all selected samples and sets either
as a single entity or as distinct entities. In the case of single en-
tity, the closest neighbour of an ER could be an ER belonging to
any set of any sample of the analysis session. In the case of dis-
tinct entities, the closest neighbour of an ER is determined
within the same set and sample of the ER.

Global correlation assessment of ERs

The similarity between replicates is frequently assessed either
before peak calling, using genome-wide read densities, or after
peak calling, using the identified ERs. Pearson’s product-
moment correlation coefficient (PCC) [15] is a threshold-
independent and scale-invariant method [16] commonly used
to compute a global correlation assessment between replicates.
PCC is also used after the peak calling when binned signal
intensities are provided, either in a separate ‘wiggle’ file per
sample or as numerical vectors per identified ER (e.g. data set
chipseq_mES of [17]). Similarly, the Jaccard Similarity
Coefficient (JSC) is a statistical method for correlation/diversity
assessment of samples, consisting on the ratio between the car-
dinalities of the intersection and the union of two sets; it can be
used both before peak calling (e.g. [18] increases genes detection
power of RNA-seq data using JSC for global similarity filtering)
or as a post peak calling correlation assessment procedure (e.g.
[19, 20]).

MuSERA determines both region-level and base-pair-level
correlations between all pairs of sets using JSC (see Figures 2
and 3). They are respectively computed as the ratio between the
number of overlapping regions (region-level correlation), or gen-
omic bases (base-pair-level correlation), and the total number of
regions, or genomic bases, in the considered sets. Base-pair-
level correlation is more stringent and is to be preferred when
the position of the ERs is known with more certainty, or when
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the experimental protocols have a low level of noise. Region-
level correlation is instead more permissive, as it scores the
overlap of entire regions rather than quantifying the magnitude
of this overlap; this correlation measure is then to be preferred
in the presence of heterogeneous or noisy data sets.

Interactive and batch execution

MuSERA implements two execution procedures: ‘Interactive’
and ‘Batch’ processing. The ‘Interactive mode’ is provided
through a graphical user interface (GUI) with a wide range of re-
view graphical features; it is intended for processing a limited
number of samples, where results need to be reviewed through
multiple user iterations for parameter tuning (see Figure 4 for
cross-functional flowchart). The ‘Batch mode’ is suitable for
processing a high number of samples with a given set of param-
eters; it reads ‘jobs’ defined in a simple way through an
Extensible Markup Language (XML) file and it has a limited set
of review features. The XML file is compliant with the World
Wide Web Consortium Document Object Model (DOM) level 1
core and DOM level 2 core recommendations, and its schema
has been defined so to ease the work of the end user in the def-
inition of ‘jobs’.

Input/output standard data formats

MuSERA processes ERs and allows further investigation of re-
sults using genome annotations as references. ERs can be read
from tab-delimited files consisting of the ER genomic interval

attributes (chromosome, start, end and P-value) as essential
fields; common standard tab-delimited formats such as
Browser Extensible Data (BED), ENCODE narrowPeak and
ENCODE broadPeak are of such kind. Genome annotations like
Reference Sequence (RefSeq) or GENCODE genes can be parsed
and loaded from files in standard formats such as the GTF.

MuSERA exports each of the resulting ER sets in a separate
BED file. Additionally, an XML file is created for each Rj

o, Rj
c and

Rj
d set, containing extensive explanatory information for each

included ER, such as (i) ER signature (i.e. chromosome, start,
end, name, P-value), (ii) initial categorization (i.e. stringent or
weak), (iii) computed combined P-value (X2) and corresponding
right-tail probability (pcomb) and (iv) signatures of the ERs it is
combined with, including the sample name they belong to.
Chromosome-wide basic statistics of each input sample (e.g.
widest/narrowest peak, lowest/highest P-value and average/
median/standard-deviation of P-values) are provided in a separ-
ate text file. When running in ‘Batch Mode’, MuSERA also ex-
ports a text file for each analysis session, providing
comprehensive information about the parameters and the over-
all analysis results for any future reference.

Implementation
Overview

MuSERA is a .NET application written in Model-View-
ViewModel (MVVM) pattern [21], with a GUI developed in
Windows Presentation Foundation (WPF) graphical system and

Figure 1. Binned data. (A) A set of bins is created with respect to the ERs of the replicates. (B) The bins are then modified with respect to known binding sites/genomic

annotations. Each bin contains all available information for the segment of genome it represents; for instance, in (B), Bin2 corresponds to r11 intersecting with Gene1 at

the genome position determined by the Bin2 coordinates. Bins are orderly stored by their genomic position, which enables a binary search for a specific bin. An ER is

possibly represented by more than one bin, i.e. by all bins that start/end within the ER coordinates (e.g. in (B), the ER r11 is represented by bins Bin2, Bin3, Bin4 and Bin5);

therefore, comprehensive information about an ER is provided by the union of all bins spanning it.

Figure 2. Genomic annotation and correlation assessment. For each ER, MuSERA computes the distance between the ER and the closest known genomic feature (site).

If an ER overlaps a feature (e.g. r11 and site1), their distance is 0; otherwise two distances are computed between the ER and the closest up-stream and down-stream fea-

tures, respectively. MuSERA determines the correlation between samples in terms of the Jaccard Similarity Coefficient (JSC), both at region level and base-pair level.

The right-hand side of the figure highlights the possibility of considerable difference between the two levels.

4 | Jalili et al.
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business logic written in C# programming language. Being the
GUI implemented in WPF, leveraging on DirectX and on the
Graphical Processing Unit in a Multithreaded Apartment (MTA)
model, MuSERA delivers a high-end smooth, interactive and
user-friendly graphics. The MVVM pattern and MTA model en-
able separation of business logic and GUI process load, which
avoids any possible lag on either side. As far as code metrics are
concerned (calculated by Microsoft Visual Studio), MuSERA con-
sists of roughly 6500 lines of code with a maintainability index
of 82, cyclomatic complexity of 2.000 and 9 maximum depth of
inheritance [22].

MuSERA source code is freely available under open-source
GPLv3 license at http://musera.codeplex.com/; its implementa-
tion for MS-Windows systems and an Oracle Virtual Box virtual
machine for its evaluation on other systems (e.g. Linux, Mac)
are freely available for downloading for non-commercial use
from http://www.bioinformatics.deib.polimi.it/MuSERA/, where
the MuSERA user manual (Supplementary file 1) is also
available.

Interactive and batch execution

The ‘Interactive mode’ is implemented using the Multi-
Threaded Apartment model, while the ‘Batch mode’ uses the
Single-Threaded Apartment model. The two modes use com-
mon thread-safe components that enable concurrent execution
of modes with no intervention, and the possibility to set the
process priority of the ‘Batch mode’.

The ‘Batch mode’ executes a series of ‘jobs’ collected in an
‘at-job’ that is defined in an XML file compliant with the DOM
specifications. An ‘at-job’ consists of three parts: (i) properties
(e.g. ‘Height’, ‘Width’, ‘Font size’) for all generated plots, (ii) path
of the file where the batch log writes and (iii) a collection of

‘jobs’. A ‘job’ is entitled as ‘Session’ and has three sets of
parameters:

• Load and Save parameters, which define the full path of input

files and the folder where to save the results; additionally, they

enable/disable saving different ER sets to separate files.
• Analysis parameters, which set analysis properties such as Ts

and Tw.

• BED parser parameters, which set properties such as P-value col-

umn number in input BED files to correctly load them.

A sample portion of an ‘at-job’ XML file is shown in
Supplementary file 2. The ‘at-job’ is executed by a ‘managed
code’ with least possible footprints, all being memory resources
freed-up at ‘job’ execution termination. Hence, the ‘Batch mode’
memory requirement is limited to the amount needed for a sin-
gle ‘job’ execution.

Determination of intersecting ERs

Cross-replicate, co-localized ERs shall be combined for overall
significance determination of evidence; for each ER i of each
sample j (i.e. rji), MuSERA combines the ERs in Rji,*, i.e. the set of
ERs in the replicates that intersect with rji (including rji), using
the Fisher’s method [10]. The set Rji,* can be determined using
various efficient methods, such as algorithms based on ordered
lists, i.e. by scanning all lists in parallel and linearly grouping
ERs. However, the performance of such algorithms degrades
when the intersection size is considerably smaller than the in-
put size, or when input sizes vary significantly between the ER
sets [23].

Algorithms based on variants of self-balancing binary search
trees, such as interval trees [24] (i.e. an augmentation of red-
black trees [25]) or segment trees [26], are asymptotically

Input

0.086

0.084

Stringent ERs

0.402

0.282

Weak ERs

0.049

0.031

Stringent – Confirmed

0.402

0.282

Weak – Confirmed

0.758

0.274

Stringent – Discarded

0.0
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0.479Base-Pair-Level Jaccard Similarity
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Figure 3. Correlation assessment hierarchy. During processing of two replicate samples, MuSERA estimates the Jaccard Similarity Coefficient between the two samples

and for each of their computed ER sets. Values are shown for the ENCODE samples wgEncodeSydhTfbsK562CmycIfna30StdAlnRep1 and

wgEncodeSydhTfbsK562CmycIfna30StdAlnRep2 (processed with analysis parameters: BioRep, Ts ¼ 10� 8, Tw ¼ 10� 4, c ¼ 10� 8, C ¼ 1), which overall show a rather

low correlation (Input). In these samples the peaks are called using MACS2.0 [4] with 0.001 P-value threshold; hence, such low correlation is expected because of low

signal-to-noise ratio. Initial classification of the ERs in each replicate (i.e. Stringent ERs versus Weak ERs) confirms that in the replicates stronger evidence correlates

better than weaker one. Combining the samples, each of the two initial categories is divided into the Confirmed and Discarded sub-categories; ERs in the Confirmed

sub-categories result to be considerably more correlated compared with their corresponding ERs in the Discarded sub-categories.
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Figure 4. Cross-functional flowchart for the MuSERA Interactive mode. The flowchart shows a simplified flow of the major Interactive mode uses. In the Process part of

the Business Logic section of the flowchart, the processes (rectangles) tagged with a black triangle in their bottom-right corner are time-consuming concurrent proc-

esses that allow executing other paths while MuSERA is busy computing them.
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optimal data structures that store intervals and efficiently sup-
port queries for intervals overlapping a given interval/point. An
ER is an interval on the genomic domain with respect to its
‘chromosome’, ‘start’ and ‘end’ attributes; this makes interval
trees an appropriate data structure for the determination of Rji,*

sets. Additionally, interval trees do not require the input to be
sorted, which saves the time for sorting a possibly unsorted
input.

MuSERA creates distinct interval trees, one for each chromo-
some of each replicate. The query time of an interval tree is
order of O(k Log2 n) for reporting k intervals when the tree holds
n items. Therefore, Rji,* determination has O(J k Log2 n) complex-
ity, as it requires processing J distinct interval trees, each repre-
senting the same chromosome for one of the J replicates.
Additionally, MuSERA processes chromosomes independently,
and hence it is parallelized by distributing individual chromo-
some processes on available threads.

Genomic annotation of ERs

Once replicates are combined, MuSERA automatically annotates
ERs with user-provided genomic features (e.g. genes, promoters,
CDSs, binding sites of other TFs), independently for each of the
ER sets (e.g. Rj

s, Rj
w, Rj

c, Rj
d). MuSERA is an interactive tool, where

the user can tune a few parameters to achieve better results;
hence, response time to update each annotation parameter
should be reasonably fast. MuSERA can linearly group ERs and
known binding sites/genomic annotations that overlap; how-
ever, this would require re-running the algorithm in case of any
user-defined parameter is changed. To avoid this, the genomic
annotation algorithm of MuSERA pre-processes data by defining
genome-wide dynamic bins with coordinates determined by the
ERs of the considered set (Figure 1A) and the known binding
sites/genomic annotations (Figure 1B), the bins being stored and
sorted according to their ‘start’ coordinate.

A bin spans a segment on the genome determined by two
consecutive start/end coordinates of ERs or genomic annota-
tions (i.e. start-start, start-end, end-start or end-end; see Bin1,
Bin2, Bin3 and Bin5, respectively, in Figure 1B), and it includes all
available information for that segment of DNA; hence, it enables
constant access for the biological interpretation of the segment.
This aspect avoids re-running the annotation process in case of
changing any user-defined annotation parameter, such as the
filter option (e.g. considering only TF binding sites or CDSs as
known binding sites/genomic annotations). Additionally, given

an ER, the corresponding DNA segments (i.e. bins) are deter-
mined in logarithmic time, because this requires a binary search
on sorted elements (bins), and the element annotations are
determined in constant time; therefore, an ER annotation is op-
timally computed in O(Log2 n), where n is the number of defined
bins.

Integrated genome browser

MuSERA implements also a flexible and highly interactive set of
plotting features based on the Dynamic Data Display [27] pack-
age, allowing real-time interactive zoom and pan on genome-
scale samples. Having combined samples, MuSERA automatic-
ally creates bins independently for each of the determined sets
(e.g. Rj

s, Rj
w

, Rj
c, Rj

d), as already shown in Figure 1, and displays
in tabular format all the ERs of the sets with their corresponding
information (e.g. ‘chromosome’, ‘start’, ‘end’, ‘P-value’, X2). By
double-clicking on any of the listed ERs, MuSERA plots it to-
gether with all the ERs (in different colours according to the set
they belong, i.e. ‘stringent confirmed’, ‘stringent discarded’,
‘weak confirmed’ or ‘weak discarded’) and annotations, if any,
within a window of user-defined size (e.g. see Figure 5); then,
this can be easily scrolled, panned and zoomed to interactively
explore the location on the DNA also of all the other ERs and
annotations.

Use case results and practical guidance

In this section, we first illustrate how sets of significant ERs are
expanded by applying MuSERA on replicates, for several types
of NGS data, such as ERs from ChIP-seq of TFs and broad and
narrow histone marks, and DNase-seq hypersensitive sites. We
show that MuSERA is able to correctly determine a new set of
ERs by locally combining their evidence on replicates, and we
prove how the integrated graphical features that MuSERA pro-
vides well support thorough inspection of the obtained results
and evaluation of their biological content.

Used data sets

We applied MuSERA on publicly available NGS data sets from
the ENCODE repository, which always provides at least two bio-
logical replicates for each experiment [28]; we considered data
sets regarding K562 (acute myelogenous leukaemia) human
cells. To test MuSERA against a variety of different types of data
and peak shapes, we decided to consider nine different data

Figure 5. An example view of the integrated genome browser. For a selected ER (e.g. the ER represented by the light blue thick interval on Rep1 line, named MACS_peak_26),

the ER(s) it is combined with (e.g. the ER represented by the purple thick interval on Rep2 line, named MACS_peak_31) and all surrounding ERs (coloured according to the set

they belong) and available annotations are plotted; hovering the cursor on an ER, a tooltip is opened to show the corresponding information (e.g. start, stop, name, P-value).

MuSERA: Multiple Sample Enriched Region Assessment | 7
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sets: two ChIP-seq data sets of the TF CTCF (CTCF1, with three
replicates, and CTCF2, with two replicates), one ChIP-seq data
set of the TF JunD (JunD, two replicates), one ChIP-seq data set
of the RNA Polymerase II molecule, responsible for gene tran-
scription (Pol2, two replicates), one ChIP-seq data set of the his-
tone mark H3K4me3, marking active promoters (H3K4me3, two
replicates), which usually generates narrow, TF-like peaks, one
DNase-seq data set, corresponding to open chromatin regions
(DNaseI, two replicates) and three data sets of histone marks,
which are deposited over large genomic regions (H3K9me3 and
H3K27me3, two replicates each, marking the body of repressed
genes; H3K36me3, two replicates, marking actively transcribed
gene bodies). The details of the samples are given in Table 1.

Results of combining ER evidence on replicates and their
validation

MuSERA has been run with parameters Ts¼ 10 � 8, Tw¼ 10� 4,
C¼ 1 in the ‘biological replicate’ mode, meaning that the valid-
ation of an ER overlapping with ERs in the other replicate sam-
ples is sufficient to validate all overlapping ERs. In particular,
with the choice C¼ 1 we decided to automatically confirm each
stringent peak, regardless of its overlap with peaks in the other
replicates, as we found this was the best strategy for the TF Myc
[8].

As we can see from Figure 6 (panels A–I), showing the sizes
of the different ER sets determined, by combining ER evidence
on replicates MuSERA allows the ‘rescue’ of a large number of
peaks (Rw,c set, dark green) below the chosen significance
threshold Ts in a single sample. The number of ‘rescued’ (i.e.
weak, confirmed) peaks in the output set Ro ranges from 12% to
more than the double of the size of the original single-sample
stringent set Rs (panel J): the presence of a biological replicate
allows a consistent expansion of the set of ‘good’ peaks by lo-
cally lowering the sensitivity threshold. The highest efficiency
is found for the Pol2, DNaseI, H3K27me3 and H3K36me3 sam-
ples, where the sample output set Ro has more than double (up

to more than triple for H3K27me3) of the peaks in the stringent
set Rs.

In all determined ER sets of the CTCF samples, we validated
our results by looking for the presence of the CTCF motif (coded
as a Position Weight Matrix in the JASPAR CORE Vertebrata
database entry MA0139.1 [29]) recognized on the genome in the
sequences spanned by the peaks in the different sets. We found
the motif enriched in all the CTCF Rs and Ro sets, as expected,
but also in all the Rw,c and in two of five Rw,d sets, even if the P-
values of the enrichments are higher (i.e. less significant) in the
Rw,d set case. This result fully validates the ‘rescue’ process pro-
posed by MuSERA, and also suggests that our peak call has been
rather stringent. The details of the validation results are shown
in Table 2.

Use case result evaluation with MuSERA graphical
features

Through its graphical interface, MuSERA allows a quick inspec-
tion of the analysis results and a thorough evaluation of their
biological content. Figure 7 shows the MuSERA ‘Overview’ panel
providing a general overview of the ER sets determined for the
CTCF1_1 sample, and including a global view of the parameter
values used. All ERs of each set are listed in a table view, to-
gether with all their quantitative values and computed statis-
tics; with just a double click, the ERs can be easily displayed in
the genomic context along the DNA, thanks to the MuSERA inte-
grated genome browser (Figure 5).

Furthermore, several other quantitative features that
MuSERA automatically computes can be straightforwardly dis-
played; some of them are shown in Figure 8: the stratification of
the ER sets over the different chromosomes (panel A), the distri-
bution of the combined significance (X2) of the ERs in each set
(panel B, Output Set of the CTCF1_1 sample) and the distribution
of the distance of the ERs in each set from the closest genomic
feature chosen (panel C, Output Set of the CTCF1_1 sample; the

Table 1. ENCODE alignment files used and their quantitative features

Sample name Short name Aligned reads Rs Rw

wgEncodeOpenChromChipK562CtcfAlnRep1 CTCF1_1 6 051 439 53 339 22 290
wgEncodeOpenChromChipK562CtcfAlnRep2 CTCF1_2 6 211 475 57 104 26 177
wgEncodeOpenChromChipK562CtcfAlnRep3 CTCF1_3 11 988 569 66 262 36 278
wgEncodeSydhTfbsK562CtcfbIggrabAlnRep1 CTCF2_1 26 957 114 58 089 45 727
wgEncodeSydhTfbsK562CtcfbIggrabAlnRep2 CTCF2_2 26 437 775 52 386 34 130
wgEncodeSydhTfbsK562JundbIggrabAlnRep1 JunD_1 16 175 565 48 152 67 154
wgEncodeSydhTfbsK562JundbIggrabAlnRep2 JunD_2 28 086 672 66 936 59 105
wgEncodeSydhTfbsK562Pol2IggmusAlnRep1 Pol2_1 17 762 352 18 392 53 489
wgEncodeSydhTfbsK562Pol2IggmusAlnRep2 Pol2_2 19 293 573 21 810 61 160
wgEncodeBroadHistoneK562H3k4me3StdAlnRep1 H3K4me3_1 9 512 593 28 595 28 271
wgEncodeBroadHistoneK562H3k4me3StdAlnRep2 H3K4me3_2 15 640 462 35 285 34 526
wgEncodeOpenChromDnaseK562AlnRep1 DNaseI_1 9 993 542 41 184 133 829
wgEncodeOpenChromDnaseK562AlnRep2 DNaseI_2 29 472 357 56 800 146 113
wgEncodeBroadHistoneK562H3k9me3StdAlnRep1 H3K9me3_1 15 816 227 2428 3324
wgEncodeBroadHistoneK562H3k9me3StdAlnRep2 H3K9me3_2 33 939 687 1978 8555
wgEncodeBroadHistoneK562H3k27me3StdAlnRep1 H3K27me3_1 12 210 065 1969 6916
wgEncodeBroadHistoneK562H3k27me3StdAlnRep2 H3K27me3_2 12 119 288 21 554 25 603
wgEncodeBroadHistoneK562H3k36me3StdAlnRep1 H3K36me3_1 14 803 144 12 606 10 365
wgEncodeBroadHistoneK562H3k36me3StdAlnRep2 H3K36me3_2 10 393 298 4435 10 189

Peaks were called with the software package MACS2.0 [4] using the parameters ‘-auto-bimodal -p 0.01 -g hs’ (thus setting a P-value threshold of 10� 2). Rs: stringent ER

set (ERs with P-value<Ts). Rw: weak ER set (ERs with Ts�P-value<Tw). Ts¼10� 8, Tw¼10� 4. Peaks for the histone marks H3K4me3, H3K9me3, H3K27me3 and

H3K36me3 were called with the ‘broad’ option.
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chosen genomic feature is the set of promoters in the human
genome hg19).

The ‘genomic annotation and functional analysis of en-
riched regions’ and the ‘nearest enriched region distance distri-
bution’ that MuSERA supports can provide better understanding
and improved biological interpretation of the obtained results.
For example, looking at the peak-to-peak distance across the
different samples (Figure 9, panel A: narrow ERs; panel B: broad
ERs), which MuSERA automatically quantifies to build the ‘near-
est enriched region distance distributions’, we can see that this
quantity is higher in weak confirmed peaks than in stringent
confirmed peaks for the considered samples of the CTCF TF and
H3K4me3 and H3K9me3 histone marks; whereas, this distance
is roughly the same for the DNase I Hypersensitive Site (DHS),
RNA Polymerase II and for some of the broad histone mark sam-
ples considered. This probably depends on the fact that the
stringent confirmed CTCF peaks correspond to high-affinity
binding sites of the TF, while the CTCF weak peaks could be
generated by transient interactions with the DNA, which are
not stabilized by a specific target, and therefore are scattered
across the genome. A similar argument holds for the H3K4me3
and H3K9me3 histone marks, although in this case the strength

of the signal is just an indication of the fraction of cells bearing
the modification, and it is more difficult to identify the mechan-
ism responsible for this difference; a good guess is that it could
be related to the local balance of the enzymes transferring and
removing the methyl groups to the histone proteins. On the
other hand, DHS ERs are found throughout the genome and do
not have preferred genomic locations where the signal is stron-
ger; therefore, in this case the peak-to-peak distance distribu-
tion is similar for strong and weak peaks. The mixed behaviour
of sample H3K27me3 may depend on the large differences in
the number of peaks across the two replicates: replicate 1 al-
most quadruplicates its number of ERs in the Ro set, thanks to
the high number of ERs in replicate 2, and probably the few
stringent confirmed peaks were more scattered around the gen-
ome than the many weak confirmed peaks. A similar case, al-
though with lesser intensity, may hold true for replicate 2 in
sample H3K36me3.

The case of RNA Polymerase II is rather surprising: RNA
Polymerase II is the molecule transcribing the genome, and it is
mostly localized on genes and promoters, although recent stud-
ies indicate that most of the genome has the potentiality of
being transcribed [31]. To gain a better insight on this aspect, we
took advantage of the ‘genomic annotation and functional ana-
lysis’ available in MuSERA to inspect the genomic location of
the RNA Polymerase II peaks. Using the ‘ER-to-feature overlap
score’ that MuSERA automatically calculates when promoters,
intragenic regions or IGR are selected as genomic features, re-
spectively, we found that the fraction of RNA Polymerase II
peaks located on these regions is unchanged in the stringent
and weak ER sets and across the replicates (Figure 10). Thus, the
features that MuSERA computes and graphically shows enabled
us to conclude that RNA Polymerase II binds with a wide range
of intensities to both genes and intergenic elements.

Finally, the ‘global correlation assessment’ provided by
MuSERA, through the evaluation of the JSC for each type of ER
set determined, confirms that the obtained output sets are

Figure 6. ER sets for the considered data sets. (A–I) ER sets in the testing data sets considered (biological replicates). SS: single sample analysis; MS: multiple sample

analysis. In each panel, the SS stacked bars represent Rs (light green/gray) and Rw (green/gray) sets in the replicates, while the MS bars show the same peaks, confirmed

or discarded according to the MuSERA output: Rs,c (light green/gray), Rw,c (dark green/gray) and Rw,d (red/black) sets. Note that setting the parameter C ¼ 1, the Rs,d set

is always empty. (J) General statistics on the cardinality of the ER sets. See Table 2 for the validation results of the CTCF peaks.

Table 2. Validation results of the peaks for the CTCF samples

Sample Rs Ro Rw,c Rw,d

CTCF1_1 7.4 e-3575 3.4 e-3786 5.2 e-338 –
CTCF1_2 1.6 e-3586 2.2 e-3846 4.1 e-147 –
CTCF1_3 8.6 e-4115 3.8 e-4321 6.9 e-199 2.4 e-128
CTCF2_1 2.6 e-3610 5.2 e-3676 2.7 e-116 9.4 e-67
CTCF2_2 7.5 e-3414 1.0 e-3517 2.8 e-267 –

P-values for the enrichment of the CTCF binding motif (JASPAR CORE Vertebrata

database entry MA0139.1), as estimated with the DREME package [30] in the

150 bp around the peak midpoint. Rs: stringent ER set. Ro: output ER set. Rw,c:

weak, confirmed ER set. Rw,d: weak, discarded ER set. ‘-’: no enriched motif.

MuSERA: Multiple Sample Enriched Region Assessment | 9
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much more congruent than the stringent sets, which
would have been used as outputs in the absence of MuSERA
(Figure 11, left panel); besides, even for weak ERs, which may in-
clude a higher fraction of spurious binding sites, the JSC value
increases considerably for the weak confirmed sets, confirming
the validity of the ‘rescue’ process that MuSERA performs
(Figure 11, right panel). The evidence in the replicates of a data
set is therefore combined in sets of ERs that are more coherent
between themselves than the outputs of single-sample
analyses.

Performance

We benchmarked the MuSERA performance for a variety of op-
erations, including loading data, combining replicates and pre-
processing of analysis results for further assessments through
e.g. genomic annotation, similarity search or integrated genome
browser. Tests were performed on a standard laptop computer
running Microsoft WindowsVR 10, with IntelVR CoreTM i3 (2.10 GHz)
CPU and 6 GB of RAM. The benchmark was performed on mul-
tiple ENCODE ChIP-seq and DNase-seq data sets regarding K562
human cells, including two to three replicates each, where the

overall number of ERs in the replicate samples of each data set
spanned few thousands to millions of ERs. Additionally, a data
set of human genome hg19 promoters (counting 82 960 pro-
moter regions) was imported for genomic annotation perform-
ance benchmarking.

In general, MuSERA performance is in the scale of seconds,
spanning few tens to hundreds of seconds depending on oper-
ation and number of ERs on replicates, from few tens of thou-
sands to millions of ERs (Figure 12). The process of parsing and
loading ERs from input sample files runs in a handful of seconds
for most samples. The algorithm of combing replicates is highly
optimized and runs in few tens of seconds for two to three repli-
cates with a few hundreds of thousands of ERs each. The correl-
ation between replicates is assessed once replicates are
combined; the algorithm runs instantaneously (hence it is not
explicitly included in Figure 12). Some operations (e.g. nearest
neighbour search, genomic annotation and genome browsing)
depend on a data structure that is automatically populated
once an analysis session is selected. Such process is executed in
background to minimize its effect on other MuSERA independ-
ent operations and maximize user experience (i.e. the user can
benefit the other independent features of MuSERA while the

Figure 7. Overview panel of the MuSERA graphical interface. After an analysis is performed, MuSERA shows the statistics of the analysed sets in the ‘Overview’ panel.

Data shown regard the CTCF1_1 sample.
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required data structure is being populated in background); the
process completes in few tens of seconds, depending on the
number of considered ERs and genomic features. Once the data
structure is populated, the operations, such as genome brows-
ing, are instantaneous.

Discussion and conclusions

We reviewed MuSERA, an effective, efficient and easy-to-use
graphical tool of broad utility to combine evidence across ChIP-
seq or DNase-seq replicates, and to evaluate them and their

Figure 8. Some graphical analyses performed by MuSERA. The different panels of MuSERA plot the features computed in the analysis. For example, we show here (A)

elements in the sets, stratified by chromosomes; (B) distribution of the combined significance (X2) of the output set (Ro) ERs for the CTCF1_1 sample; (C) distance of ERs

in the output set (Ro) of the CTCF1_1 sample from human promoters: clearly, the CTCF TF prefers to bind the DNA close to the regulatory regions of a gene.

MuSERA: Multiple Sample Enriched Region Assessment | 11
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biological relevance in the genomic context. MuSERA allows the
annotation of samples with user-defined genomic features and
the visualization of results in an integrated genome browser.
Furthermore, it provides a rich set of quantitative evaluations
and interactive graphical displays, which greatly help the
understanding and biological interpretations of results.

Common tools used to analyse NGS data are usually de-
signed for scientists with training in bioinformatics or other
quantitative disciplines, as they usually involve command-line
interfaces and heavily rely on extensive coding abilities. This
naturally poses a barrier against biologists who generated the
data, and would like to directly perform simple analyses on
them. Only few tools make use of a GUI to reach out to larger
audiences, the Galaxy project being the most prominent ex-
ample [32, 33]. However, this large, all-purpose tool can become
rather complex to use despite the presence of a GUI, and usually
requires powerful computing facilities to run analysis applica-
tions on NGS data files, which are typically large. MuSERA, on
the other hand, is a dedicated tool efficiently performing inte-
grated analysis of replicated NGS data sets involving ERs, which
can be directly used on any personal computer and mastered in
a short time. Some tools, like Nebula [34], provide a more
focused GUI centred on the processing of ChIP-seq data, and
yet, they do not consider the presence of replicates. This same
and relevant limitation generally applies to the available tools
commonly used for NGS data evaluation, including
GenometricCorr [35], which is focused on the detection of gen-
ome-wide correlations between pairs of samples; it includes

four different methods to compute these correlations (‘relative
distance’, ‘absolute distance’, ‘projection’ and ‘Jaccard’), to-
gether with appropriate null models and statistical tests to
evaluate the significance of the correlations. We note that the
‘ER-to-feature overlap score’ implemented in MuSERA can be
thought of a specific case of the ‘absolute distance’ method im-
plemented in GenometricCorr, where all distances>0 (i.e. con-
sidering only non-overlapping regions in the pair of samples
considered) are discarded. Some other tools, like PAPST [36],
focus on co-localization of different types of ERs, but do not con-
sider the significance of the ERs in their analysis. Instead,
MuSERA uniquely combines a rigorous approach for jointly
evaluating ERs in replicates [8] with an intuitive GUI and an
array of useful downstream analyses, both computational and
graphical. Moreover, it leverages on high-end data structures to
minimize the runtime of common analysis procedures, and
executes time-consuming operations in the background, result-
ing in high user-friendly interaction with minimal lag.
Additionally, while batch processing on common tools requires
scripting and/or coding knowledge, MuSERA facilitates batch
execution specification by providing a simple XML structure to
define batch jobs.

We applied MuSERA to ChIP-seq data sets of TFs and histone
marks, and to a DNase-seq data set, and we found that the effi-
ciency of the ‘rescue’ of weak ERs varies between 12% and 279%,
thus potentially making a big impact on the final list of sample-
specific confirmed ERs. Variation of MuSERA efficacy depends
on many factors, including the quality of replicates and the

Figure 9. Peak-to-peak distance. The boxplots represent the peak-to-peak distance for the stringent confirmed and weak confirmed ER sets for all the samples con-

sidered. Samples displaying narrow, Gaussian-like peaks (A) are shown separated from samples having ERs with a broader shape (B). While this distance is on average

greater in the weak confirmed ER sets for the considered TFs (CTCF and JunD) and the H3K4me3 and H3K9me3 histone marks, it stays roughly constant in the two sets

for DHS and RNA Polymerase II, and in the remaining histone marks.

12 | Jalili et al.
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Figure 11. Region-level Jaccard Similarity Coefficient (JSC). The JSC measures the similarity between two or more sets, and it is automatically computed by MuSERA for

any type of ER set determined. The figure shows that, for each of the data sets considered, the similarity between the output sets is much higher than the similarity be-

tween the stringent sets (left panel). For the sets of weak ERs (right panel), which usually contain a higher fraction of binding sites, the JSC value is rather low, but it

considerably increases for the weak confirmed sets, supporting the validity of the evidence-combining process that MuSERA performs. Finally, we note that the CTCF1

data set, which has three replicates, has a lower JSC value owing to the evaluation of an additional sample in the overall ER overlaps.

Figure 10. Distribution of RNA Polymerase II ERs in the genome. RNA Polymerase II (Pol2) ERs fall mostly around genes (promoter, intragenic), but a considerable frac-

tion is located in intergenic regions. This behaviour is highly conserved across the two replicates considered and across stringent confirmed and weak confirmed ERs.

MuSERA: Multiple Sample Enriched Region Assessment | 13
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biological characteristics of the ERs. For example, for the TF
CTCF we observed the lowest rate of rescue of weak peaks
among all the replicates: this TF makes contact with the DNA
through 11 distinct zinc-finger domains [37], and therefore
binds in an extremely strong way. In this case, most of these
interactions correspond to a clear signal in the ChIP-seq experi-
ment, and the corresponding ERs are inevitably classified as
stringent. Therefore, for this particular TF, the replicates are
more coherent than usual, and most of the weak interactions
are classified as noise. On the opposite, DNaseI hypersensitive
sites have been shown to display a continuum of intensities,
which does not saturate even at high sequencing depths [38];
therefore, for these experiments, the border between weak and
stringent ERs is somewhat arbitrary and many of the ERs classi-
fied as weak in a single sample correspond to true open chro-
matin regions, consistently observed across replicates. In this
case, MuSERA is particularly successful in expanding the set of
the confirmed ERs.

The integrated genome browser and the several graphical
features that MuSERA offers for genomic annotation and func-
tional analysis of ERs, nearest ER distance distribution and glo-
bal correlation assessment of ERs proved useful for the
evaluation and biological interpretation of the obtained ERs
within the genomic context, and could be the starting point of
deeper functional analyses based on more refined measures, as
currently implemented in other tools [9, 35, 36]. Moreover, the
method that MuSERA implements to obtain the ERs was proved,
with respect to other approaches, to optimally address the spe-
cific task of combining evidence over replicates [8]. Its output,
designed to allow quick pipelining to downstream analyses,
provides both sample-specific BED files of the different ER sets
determined, and a single BED file unifying the significant con-
firmed ERs present in the combined replicate samples; all these
files can be directly analysed with common tools like BEDTools
[39], BEDOPS [40] or Bioconductor [41]. In addition, the overview
XML files generated give all the details about the performed
combination of multiple evidence across replicates, and allow
tracking down the individual overlapping events among ERs. All

this makes MuSERA a tool likely to be of broad utility that repre-
sents a significant advance over previously published software.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.

Key Points

• Replicates in next-generation sequencing experiments
are recommended, but their full potential, especially
in experiments involving the identification of enriched
regions (ER), is often neglected.

• MuSERA is a tool that allows combining local evidence
in replicates to improve ER calling, and provides quan-
titative evaluations and graphical features to assess
the biological relevance of each determined ER set
within its genomic context; they include genomic an-
notation of determined ERs, nearest ER distance distri-
bution and global correlation assessment of ERs.

• MuSERA comes with an intuitive graphical user inter-
face, making it immediate to use, which provides an
integrated genome browser and an array of graphical
displays that greatly support understanding and biolo-
gical interpretations of the results.

• By applying MuSERA to different data types, including
ChIP-seq of transcription factors or histone marks and
DNase-seq hypersensitive sites, we always found
enhanced sets of ERs and proved its effective support
in the inspection of obtained results and evaluation of
their biological content.

• MuSERA represents a significant advance over previ-
ously published software, as we discuss and compara-
tively demonstrate.

Figure 12. Benchmarking of MuSERA main operations. Operation runtime, on a logarithmic scale, for increasing number of ERs in combined replicates of ENCODE

ChIP-seq or DNase-seq data sets (two to three replicates for each data set). The data sets considered were downloaded from ENCODE; for the ER counts in the figure

they were, from left to right: wgEncodeSydhHistoneK562bH3k4me3bUcdAlnRep1/2, wgEncodeUwDnaseK562Znf4g7d3AlnRep1/2, wgEncodeUwDnaseK562Znf2c10c5

AlnRep1/2, wgEncodeOpenChromDnaseK562NabutAlnRep1/2 and wgEncodeOpenChromDnaseK562G1phaseAlnRep1/2/3.
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